KINEMATIKA
(HMKK533)

ANDY NUGRAHA, S.T., M.T.
HAJAR ISWORO, S.Pd., M.T.

PROGRAM STUDI TEKNIK MESIN
FAKULTAS TEKNIK
UNIVERSITAS LAMBUNG MANGKURAT
2018
BUKU AJAR
KINEMATIKA
HMKK533

Andy Nugraha, S.T., M.T.
Hajar Isworo, S.Pd., M.T.

PROGRAM STUDI TEKNIK MESIN
FAKULTAS TEKNIK
UNIVERSITAS LAMBUNG MANGKURAT
2018
KATA PENGANTAR

Kami sangat menyadari banyak pihak yang telah membantu terselesaikannya buku ajar ini. Terutama kami ucapkan terima kasih kepada para penulis yang menjadi buku acuan kami dalam pembuatan buku ajar ini. Kami menyadari bahwa buku ajar ini sangat jauh dari kata sempurna, maka apabila terdapat kesalahan dalam penulisan ataupun isi dari buku ini, kami mengharap kritik dan saran membangun untuk perbaikan ke depan buku ajar ini.

Penulis,

Tim dosen
DAFTAR ISI

KATA PENGANTAR ... ii

DAFTAR ISI ... iii

BAB I KONSEP DASAR .. 1

 1.1 Tujuan ... 1

 1.2 Pendahuluan ... 1

 1.3 Kinematika .. 1

 1.4 Dinamika ... 1

 1.5 Diagram Kinematika ... 2

 1.6 Pasangan .. 2

 1.7 Engsel .. 3

 1.8 Derajat Kebebasan ... 4

 1.9 Vektor .. 5

BAB II SIFAT-SIFAT GERAKAN ... 8

 2.1 Tujuan ... 8

 2.2 Lintasan dan Kecepatan Linier .. 8

 2.3 Perpindahan Sudut dan Kecepatan Sudut .. 9

 2.4 Percepatan Linier dan Percepatan Sudut ... 11

 2.5 Gerakan Absolut dan Gerakan Relatif ... 13

BAB III PUSAT KECEPATAN SESAAAT .. 16

 3.1 Tujuan ... 16

 3.2 Definisi ... 16

 3.3 Menentukan Pusat Kecepatan Sesaat ... 17

KINEMATIKA
BAB IV MENCARI KECEPATAN MENGGUNAKAN PUSAT KECEPATAN SESAAAT .. 24
4.1 Tujuan .. 24
4.2 Prinsip-Prinsip Dasar .. 24
4.3 Mekanisme 4 Batang Hubung .. 28

BAB V MENENTUKAN KECEPATAN MENGGUNAKAN PERSAMAAN
KECEPATAN RELATIF .. 35
5.1 Tujuan .. 35
5.2 Kecepatan Linier .. 35
5.3 Metode Bayangan .. 38
5.4 Kecepatan Sudut .. 38
5.5 Kecepatan Titik Berimpit .. 39

BAB VI MENENTUKAN PERCEPATAN MENGGUNAKAN PERSAMAAN
PERCEPATAN RELATIF ... 42
6.1 Tujuan .. 42
6.2 Pendahuluan .. 42
6.3 Percepatan Normal dan Percepatan Tangensial ... 43
6.4 Metode Bayangan .. 46
6.5 Percepatan Sudut... 47
6.6 Percepatan Titik Berimpit .. 48
6.7 Mekanisme Kontak Menggelinding .. 50
6.8 Penggunaan Titik Bantu untuk Analisis Mekanisme Kompleks 52

DAFTAR PUSTAKA
BAB I
KONSEP DASAR

1.1 Tujuan
Mahasiswa dapat Menjelaskan Diagram Kinematika, Pasangan, Engsel dan Derajat Kebebasan.

1.2 Pendahuluan
Pada tahap awal proses perancangan mekanisme suatu mesin, perlu terlebih dahulu dilakukan analisis terhadap mekanisme pergerakan dan kecepatan tiap-tiap komponennya agar memenuhi fungsi keseluruhan dari mesin tersebut. Adapun bidang ilmu pengetahuan yang mempelajari pergerakan komponen mesin adalah kinematika. Pada bab ini akan mempelajari dari suatu mekanisme atau mesin.

1.3 Kinematika
Kinematika adalah suatu bidang ilmu yang mempelajari gerak relatif dari elemen – elemen mesin, yaitu kecepatan dan percepatannya. Kecepatan dan percepatan tersebut diperoleh dalam bentuk yang berguna sebagai informasi untuk memdapatkan gaya-gaya dinamik yang bekerja pada elemen-elemen mesin tersebut.

1.4 Dinamika
Dinamika adalah bidang ilmu yang mempelajari gaya-gaya yang bekerja pada elemen mesin yang diakibatkan oleh percepatan translasi atau rotasi yang terjadi pada elemen-elemen mesin.

Hubungan antara gaya-gaya dan gerak benda didasarkan pada hukum Newton:

a. Suatu partikel akan tetap diam atau bergerak dengan kecepatan tetap pada suatu garis lurus bila tidak ada gaya yang bekerja padanya.

b. Percepatan berbanding lurus dengan gaya resultan yang bekerja padanya dan berbanding terbalik dengan massanya.

c. Aksi = Reaksi.
1.5 Diagram Kinematika

Untuk membuat simulasi gerakan mesin, baik yang dilakukan dengan bantuan computer maupun secara manual, langkah awal yang sangat penting adalah membentuk Gambar mesin sesungguhnya berupa bentuk sketsa sehingga hanya bagian-bagian yang akan memberikan efek pada gerakannya yang diperhatikan. Pada Gambar 1.1 diperhatikan mekanisme motor bakar satu silinder berikut diagram kinematikanya.

Dalam permodelan diagram kinematika, perlu dilakukan pemberian identitas atau penomoran atas setiap batang hubung. Batang hubung bagian-bagian yang diam ditandai dengan angka 1 sehingga dapat dikatakan sebagai batang hubung 1. Batang hubung 1 merupakan referensi dari seluruh posisi, kecepatan, dan percepatan batang hubung lain yang bersifat relatif terhadapnya.

![Gambar 1.1 Motor Bakar 1 Silinder](image)

1.6 Pasangan

Pasangan (pairing) terdiri dari 2 bagian atau elemen yang saling berkontak. Pasangan dibedakan menjadi 2 antara lain:

a. **Pasangan Rendah (Lower pair)**

Titik kontak pada pasangan ini berupa bidang. Sebagai contoh. Perhatikan Gambar silinder pneumatik pada Gambar 1.2 yang pada bagian sisi dalam silinder perkontak translasi dengan piston.
b. **Pasangan Tinggi (Higher Pair)**

Titik kontak pada pasangan ini berupa titik. Contohnya, pasangan *cam* dan *follower* seperti ditunjukkan pada Gambar 1.3.

\[
j = n - 1
\]

\[
j = \text{jumlah sambungan}
\]

\[
n = \text{jumlah batang hubung}
\]

1.7 **Engsel**

Engsel adalah sambungan (*joint*) antara 2 atau lebih batang hubungan (*n* batang hubung). Untuk *n* batang hubung yang dihubungkan pada satu titik sambungan, jumlah sambungan yang dimiliki sebanyak *n*-1 sambungan atau dalam bentuk persamaan berikut:

\[
j = n - 1
\]

\[
j = \text{jumlah sambungan}
\]

\[
n = \text{jumlah batang hubung}
\]
1.8 Derajat Kebebasan

Derajat kebebasan menunjukkan jumlah kemungkinan pergerakan pada saat yang bersamaan. Misalkan, engsel pintu atau jendela mempunyai jumlah derajat kebebasan satu karena gerakan yang terjadi adalah rotasi satu arah. Pada Gambar 1.5, tampak Gambar slinder bearing berikut model kinematikanya yang mempunyai satu derajat kebebasan dengan arah gerakan translasi satu arah.

Gambar 1.5 Slinder bearing dan Model Kinematikanya

Contoh lain, roda belakangnya troli yang mempunyai 2 derajat kebebasan, yaitu putaran dalam arah sumbu y dan z seperti terlihat pada Gambar 1.6.

Gambar 1.6 Sistem dengan 2 Derajat Kebebasan

Suatu rangkaian mekanisme juga mempunyai derajat kebebasan. Jumlah derajat kebebasan suatu mekanisme dapat ditentukan dengan persamaan berikut:

\[x = 3(n-1)-2j-h \]

(1.2)

di mana:

- \(x = \) derajat kebebasan
- \(j = \) jumlah sambungan
Sebagai ilustrasi, perhatikan mekanisme pemotong jarring (web) berikut dengan kinematikanya. Fondasi (base) mesin kita notasikan dengan angka 1, batang hubung $O_{12}B$ kita notasikan sebagai batang hubung 2, AB adalah batang hubung 3, dan $O_{14}B$ sebagai batang hubung 4.

![Diagram Kinematika](image)

Gambar 1.7 Mekanisme Pemotong Jaring dengan Diagram Kinematikanya

Dari diagram kinematika itu, diketahui bahwa jumlah batang hubung adalah 4 dan jumlah sambungan atau pasangan rendah:

- $n = 4$ dan $j = 4$

sehingga derajat kebebasannya:

$$x = 3(n - 1) - 2j$$

$$= 3(4 - 1) - 2 \times 4 = 9 - 8 = 1$$

1.9 VEKTOR

Dalam ilmu mekanika, besaran yang digunakan secara garis besar dibagi atas besaran scalar dan besaran vektor. Besaran skalar adalah suatu besaran yang mempunyai besar, tetapi tidak mempunyai arah, misalnya volume suatu benda dan luas bidang. Adapun besaran vektor adalah suatu besaran yang mempunyai besar dan arah, misalnya lintasan, gaya, kecepatan, dan percepatan.
Suatu besaran vektor dapat dinyatakan dalam bentuk garis lurus dengan ujung berbentuk anak panah yang menunjukkan arah vektor tersebut. Untuk memudahkan di dalam menggambar vektor, kita dapat menggunakan skala tententu. Misalnya kita ingin menyatakan kecepatan 120 m/s dengan arah 60° dalam bentuk vektor \(P \). Jika kita menskalakan 30 m/s adalah 1 cm maka panjang vektor \(P \) adalah \(\frac{120}{30} \) cm atau 4 cm. Kita juga dapat menggambar vektor \(Q \) dengan skala yang sama, yang menunjukkan suatu kecepatan sebesar 150 m/s dengan arah 135°.

Gambar 1.8 Vektor \(P \) dan Vektor \(Q \)

Operasi penjumlahan dan pengurangan juga berlaku untuk vektor. Secara umum, penjumlahan vektor disimbolkan dengan \(\rightarrow \) dan pengurangan dengan symbol \(\rightarrow \).

Sebagai ilustrasi, perhatikan contoh berikut:

1. \[R_1 = P + Q \]
2. \(R_2 = P \rightarrow Q \)

3. \(R_4 = Q \rightarrow P \)

4. \(R_3 = 2P \rightarrow Q \)
BAB II
SIFAT-SIFAT GERAKAN

2.1 Tujuan
a. Mahasiswa mampu memahami dan menjelaskan lintasan dan kecepatan liner.
b. Mahasiswa mampu memahami dan menjelaskan perpindahan sudut dan kecepatan sudut.
c. Mahasiswa mampu memahami dan menjelaskan percepatan linier dan percepatan sudut.
d. Mahasiswa mampu memahami dan menjelaskan gerakan absolut dan gerakan relatif.

2.2 Lintasan dan Kecepatan Linier
Lintasan suatu partikel dedefinisikan sebagai perubahan posisi partikel tersebut, sedangkan besar lintasan merupakan perbedaan jarak antara posisi awal dan posisi akhir partikel tersebut. Sebagai contoh, pada Gambar 2.1 tampak titik P bergerak dari A ke B.

Gambar 2.1 Pergerakan Titik P dari A ke B
Vektor lintasan dan besamnya lintasan linier dinyatakan dalam fungsi x dan y:

\[\Delta_s = \Delta_x + \Delta_y \] \hspace{1cm} (2.1)

\[\Delta_s = \sqrt{(\Delta_x)^2 + (\Delta_y)^2} \] \hspace{1cm} (2.2)

Dan arah lintansannya dinyatakan sebagai berikut

\[\alpha = \tan^{-1} \left(\frac{\Delta_y}{\Delta_x} \right) \] \hspace{1cm} (2.3)

Jika jarak lintasan kecil dan mendekati nol maka vector \(\Delta s \) pada titik B merupakan garis singgung lintasan pada titik B. Kecepatan linier suatu titik yang bergerak pada lintasannya adalah perubahan posisi dibagi perubahan waktu yang secara matematis dinyatakan sebagai berikut:

\[V = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt} \] \hspace{1cm} (2.4)

Jarak lintasan s adalah fungsi dari waktu t dan kecepatan V, yang merupakan gradient lintasan AB atau garis singgung pada titik A.

2.3 Perpindahan Sudut dan Kecepatan Sudut

Rotasi atau perpindahan sudut suatu titik didefinisikan sebagai perubahan posisi titik tersebut dengan jarak yang tetap terhadap suatu titik lain. Sebagai ilustrasi, kita tinjau titik A pada roda yang berputar terhadap sumbu 0.

![Gambar 2.2 Rotasi](image-url)
Pada Gambar 2.2, posisi awal adalah A dan bergerak ke posisi A dengan lintasan sudut OA sebesar $\Delta \theta$ dalam selang waktu Δt. Kecepatan sudut dari roda:

$$\omega = \lim_{\Delta \rightarrow 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \quad (2.5)$$

Pada Gambar 2.2, jari-jari roda R sama dengan panjang OA sehingga panjang lintasan dari A ke A' adalah $R\Delta \theta$, dengan Θ adalah besar sudut yang dinyatakan dalam satuan radian. Melalui persamaan diperoleh

$$V = \lim_{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \rightarrow 0} \frac{R\Delta \theta}{\Delta t} = R \frac{d\theta}{dt} \quad (2.6)$$

Dengan mensubtitusikan persamaan (2.5) ke dalam persamaan (2.6) maka diperoleh hubungan kecepatan linier dengan kecepatan sudut:

$$V = R \times \omega \quad (2.7)$$

ω adalah kecepatan sudut dengan satuan rad/s. Umumnya, kecepatan sudut dinyatakan dalam putaran per menit atau rpm. Mengingat bahwa satuan putaran adalah 2π radian maka diperoleh hubungan sebagai berikut:

$$\omega = \frac{2\pi}{60} n \quad (2.8)$$

di mana:

ω = kecepatan sudut (rad/s)

n = putaran per menit (rpm)
Mengingat bahwa kecepatan sudut semua titik dalam sebuah benda yang berputar adalah sama dengan kecepatan linier suatu titik adalah berbanding linier dengan jari-jarinya (persamaan 2.7) maka diperoleh hubungan:
\[
\frac{V_A}{V_B} = \frac{R_A}{R_B}
\]
(2.9)

2.4 Percepatan Linier dan Percepatan Sudut

Sebuah titik atau partikel yang bergerak lurus dapat mempunyai percepatan. Percepatan linier adalah perubahan kecepatan \(\Delta t \) dalam selang waktu \(\Delta t \), yang secara matematis dijabarkan sebagai berikut:
\[
A = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \frac{dV}{dt}
\]
(2.10)
sedangkan kecepatan linier :
\[
V = \frac{ds}{dt}
\]
(2.11)
di mana:
- \(s \) = panjang lintasan
- \(V \) = kecepatan linier
- \(A \) = percepatan linier

Dengan demikian, hubungan antara lintasan dan percepatan :
\[
A = \frac{d^2s}{dt^2}
\]
(2.12)

Serupa dengan gerakan linier maka untuk sebuah benda yang berputar dengan percepatan \(\alpha \) berlaku hubungan sebagai berikut :
\[
\omega = \frac{d\theta}{dt}
\]
(2.13)
dan
\[
\alpha = \frac{d^2\theta}{dt^2}
\]
(2.14)
di mana:
\[\theta = \text{besar lintasan sudut} \]
\[\omega = \text{kecepatan sudut} \]
\[\alpha = \text{percepatan sudut} \]

titik yang bergerak dengan lintasan berupa kurva akan mempunyai percepatan normal sebagai akibat perubahan arah kecepatan liniernya. Jika besar kecepatan liniernya berubah maka titik tersebut juga mempunyai kecepatan tangensial. Pada Gambar berikut terlihat suatu titik yang bergerak melingkar dengan percepatan sudut \(\omega \).

Gambar 2.4 Pergerakan dengan Percepatan Sudut \(\alpha \)

Gambar 2.5 Uraian Perubahan Kecepatan \(\Delta V \)

Dari Gambar 2.5 tampat bahwa perubahan kecepatan \(\Delta V \) adalah jumlah dari vector \(\Delta V^n \) yang diakibatkan oleh perubahan arah kecepatan dan vector \(\Delta V^t \) yang diakibatkan oleh percepatan sudut \(\alpha \).

\[\Delta V = \Delta V^t + \Delta V^n \] \hspace{1cm} (2.15)
Besarnya kecepatan tangensial dinotasikan A^t dan percepatan normal adalah A^n. Percepatan tangensial didapatkan dari persamaan berikut:

$$A^t = \lim_{\Delta t \to 0} \frac{\Delta V^t}{\Delta t} = \frac{dV^t}{dt}$$

(2.16)

Dimana $dV^t = Rd\omega$ sehingga persamaan (2.16) menjadi:

$$A^t = R \frac{d\omega}{dt}$$

(2.17)

Atau

$$A^t = Ra$$

(2.18)

Percepatan normal adalah percepatan akibat perubahan arah kecepatan. Pada Gambar tersebut terlihat bahwa kecepatan V berubah arah sebesar $d\theta$ sehingga terjadi perubahan kecepatan sebesar ΔV^n.

$$A^n = \lim_{\Delta t \to 0} \frac{\Delta V^n}{\Delta t} = \frac{dV^n}{dt}$$

(2.19)

Dari trigonometri, kita ketahui bahwa panjang busur adalah besar sudut dikalikan jari-jari sehingga besar ΔV^n:

$$\Delta V^n = V\Delta \theta$$

atau

$$dV^n = Vd\theta$$

(2.20)

Dengan menggunakan persamaan (2.17),(2.19)dan (2.20) diperoleh:

$$A^n = V\omega = \omega^2R = \frac{V^2}{R}$$

(2.21)

Perhatikan Gambar 2.5. Jika sudut $\Delta \theta$ mengecil hingga mendekati nol maka ΔV^n akan berarah menuju pusat putaran. Disini, percepatan normal selalu menuju pusat putaran, sedangkan percepatan linier total dari titik yang bergerak melingkar adalah resultan dari percepatan normal dan percepatan tangensialnya.

$$A = \sqrt{(A^n)^2 + (A^t)^2}$$

2.5 Gerakan Absolut dan Gerakan Relatif

Gerakan relatif suatu benda terhadap benda lain adalah gerak benda terhadap benda lain yang dianggap diam. Jika kedua benda tersebut masing-masing bergerak maka mereka mempunyai perbedaan dalam gerak absolutnya. Contohnya, orang yang berjalan diatas diatas kereta
api. Jika kereta api bergerak kekanan dengan percepatan 60 km/jam, sedangkan orang yang berada diatas kereta api berjalan dengan kecepatan 20 km/jam kekiri maka kecepatan absolut orang tersebut adalah 40 km/jam kekanan dan kecepatan relatif orang tersebut terhadap kereta api adalah 20 km/jam.

Gambar 2.6 Contoh Kecepatan Relatif dan Kecepatan Absolut

Jika arah kecepatan ke kiri dinyatakan dengan negative dan arah kekanan dinyatakan dengan positif maka:
\[V_{truk} = V_T = -70 \text{ km/jam}, \quad V_{KA} = 60 \text{ km/jam} \quad \text{dan} \quad V_{man/KA} = -20 \text{ km/jam} \]

kecepatan kereta api relative truk :
\[V_{truk} = V_{ka} \quad \rightarrow \quad V_r \quad \rightarrow \quad V_{KA} \quad \rightarrow \quad V_{truk} \]
\[V_{KA/r} = 190 \text{ km/jam} \]
Adapun kecepatan absolut orang yang berjalan :
\[V_{man} = V_{man/ka} \quad \rightarrow \quad V_{KA} \quad \rightarrow \quad V_{man/KA} \]
\[V_{min} = 40 \]
Sebagai ilustrasi terakhir, perhatikan kecepatan kendaraan di suatu kapal induk. Kecepatan absolut kapal adalah 40 km/jam dan kecepatan relatif kendaraan adalah 30 km/jam.

![Gambar 2.7 Kecepatan Kendaraan Disuatu Kapal Induk](image)

Kecepatan absolut kendaraan A yang berjalan:

\[\mathbf{v}_A = \mathbf{v}_{A/S} + \mathbf{v}_S \]
BAB III
PUSAT KECEPATAN SESAAT

3.1 Tujuan
a. Mahasiswa mampu memahami dan menentukan pusat kecepatan sesaat.
b. Mahasiswa mampu memahami berbagai kondisi pusat kecepatan sesaat.
c. Mahasiswa mampu memahami dan menjelaskan teori kennedy.
d. Mahasiswa mampu mengetahui jumlah pusat kecepatan sesaat.
e. Mahasiswa mampu memahami metode diagram lingkaran untuk menentukan letak pusat kecepatan sesaat.

3.2 Definisi
Pusat kecepatan sesaat suatu benda adalah sebuah titik pada suatu benda di mana benda lain berputar relatif terhadapnya. Sebagai ilustrasi, perhatikan Gambar 3.1 yang memperlihatkan suatu mekanisme 4 batang. Batang hubung yang tidak bergerak kita notasikan sebagai 1, sedangkan O_{12} yang merupakan sambungan antara batang hubung 1 dan batang hubung 2 dapat dikatakan sebagai titik pusat 12. Pada titik pusat tersebut, batang hubung 2 berputar terhadap benda. Hal ini juga berlaku pada titik pusat O_{23}. Pada titik pusat tersebut, batang hubung 3 berputar relatif terhadap batang hubung 2 dengan pusat O_{23} dan jia batang 3 ditahan maka batang hubung 2 berputar relatif terhadap batang hubung 3 dengan pusat O_{23}. Dalam hal ini, perbedaannya O_{12}, O_{14}, O_{23} dan O_{34}, antara lain O_{12} dan O_{14} sebagai titik pusat tetap (fixed center), sedangkan O_{23} dan O_{34} sebagai titik pusat yang bergerak.

Gambar 3.1 Titik Pusat Tetap dan Titik Pusat Bergerak
3.3 Menentukan Pusat Kecepatan Sesaat

Pada bab sebelumnya telah kita ketahui bahwa setiap benda yang mempunyai gerakan relatif suatu titik terhadap titik lainnya akan mempunyai pusat kecepatan sesaat. Titik-titik pada benda tersebut memenuhi kondisi sebagai berikut:

a. Semua titik pada benda tersebut akan mempunyai pusat kecepatan sesaat yang sama.
b. Pusat kecepatan sesaat terletak pada garis yang tegak lurus dengan arah kecepatan titik tersebut. Tentunya, garis tersebut ditarik dari titik yang kita tinjau.
c. Perpotongan garis tegak lurus dari setiap titik yang kita ketahui arah kecepatannya adalah pusat kecepatan sesaat benda tersebut.

![Gambar 3.2 Pusat Kecepatan Sesaat Yang Dapat Berubah-Uubah](image)

3.4 Berbagai Kondisi Pusat Kecepatan Sesaat

Pada subbab ini akan dibahas mengenai kondisi pusat kecepatan sesaat pada benda yang meluncur, benda yang menggelinding sempurna, dan benda yang menggelinding tidak sempurna.
Benda Yang Meluncur

Telah dijelaskan sebelumnya bahwa benda yang bergerak dianggap berotasi terhadap suatu poot gerak. Pada Gambar 3.3a tampak suatu benda yang meluncur dengan pusat O₁₂, sedangkan pada Gambar 3.3b adalah slider yang bergerak translasi. Benda yang bergerak tegak lurus juga dapat dianggap bergerak rotasi dengan jari-jari tak hingga. Dengan demikian, titik pusat benda yang bergerak translasi adalah tak hingga.

Benda Yang Menggelinding Sempurna

Untuk benda-benda yang melakukan rolling, pusat kecepatan sesaatnya terletak pada titik kontak kedua benda tersebut.

Benda Yang Menggelinding Tak Sempurna

Pada benda-benda yang bergerak menggelinding (rolling) tak sempurna, pusat kecepatan sesaatnya tak terhingga dan tegak lurus dengan bidang kontak.
3.5 **Teori Kennedy**

Teori Kennedy didefinisikan sebagai berikut: "Bila ada tiga benda pada suatu bidang gerak relative satu terhadap lainnya maka akan terdapat 3 pusat kecepatan sesaat yang akan terletak pada satu garis lurus".

Untuk membahas teori ini, perhatikan 3 buah benda dalam satu bidang seperti terlihat pada Gambar 3.6 berikut. Berdasarkan teori Kennedy maka titik O_{12}, O_{13} dan O_{23} harus berada pada satu garis lurus. Kita umpanakan titik Q terletak pada O_{23}, serta titik Q_2 dan Q_3 merupakan milik benda 2 dan 3. Karena titik Q merupakan titik pusat sekutu antara benda 2 dan benda 3 maka kecepatan $V_{Q2} = V_{Q3} = V_{O23}$. Kemudian akan terlihat bahwa arah kecepatan tidak sama.
3.6 Jumlah Pusat Kecepatan Sesaat

Jumlah pusat kecepatan sesaat pada sebuah mekanisme dapat ditentukan dengan persamaan berikut:

\[N = \frac{n(n-1)}{2} \]

(3.1)

di mana:

- \(N \) = Jumlah pusat kecepatan sesaat pada mekanisme
- \(n \) = Jumlah batang hubung pada mekanisme

untuk mencari pusat kecepatan sesaat, kita dapat menggunakan teori Kennedy atau menggunakan diagram lingkaran.

3.7 Metode Diagram Lingkaran Untuk Menentukan Letak Pusat Kecepatan Sesaat

Untuk menjelaskan penggunaan diagram lingkaran, perhatikan mekanisme 4 batang pada Gambar berikut ini. Kita akan melakukan tahap-tahap sebagai berikut:

1. Pertama-tama, kita tentukan dahulu titik pusat utama, yaitu \(O_{12}, O_{14}, O_{23}, \) dan \(O_{34}. \)

Jumlah titik pusat mekanisme tersebut:

\[N = \frac{n(n-1)}{2} = \frac{4(4-1)}{2} = 6 \]

Berarti ada 2 buah titik pusat kecepatan sesaat yang harus dicari.

![Diagram Lingkaran Mekanisme 4 Batang]
2. Pada mekanisme tersebut, kita melihat 4 buah batang hubung. Kita buat lingkaran yang dibagi dengan 4 buah titik berikut:

3. Untuk pusat kecepatan sesaat O_{12}, Tarik garis antara titik 1 dan 2.

4. Untuk pusat kecepatan sesaat O_{14}, Tarik garis antara titik 1 dan 4.

5. Untuk pusat kecepatan sesaat O_{23}, Tarik garis antara titik 2 dan 3.

6. Untuk pusat kecepatan sesaat O_{34}, Tarik garis antara titik 3 dan 4.
Titik pusat kecepatan sesaat yang belum diketahui dapat dicari dengan tahap-tahap berikut ini:

1. Penentuan pusat kecepatan sesaat O_{13}

 Pertama-tama, kita tarik garis 13. Perhatikan Gambar, garis antara titik 1 dan 3 merupakan sisi yang sama pada $\Delta123$ dan $\Delta134$. Dengan demikian, pusat kecepatan sesaat O_{13} merupakan titik potong antara 2 buah garis:

 $O_{12} \quad O_{13} \quad O_{13} \quad O_{14} \quad O_{34}$

 Pada Gambar mekanisme, kita tarik garis:

 $O_{12} \quad O_{23}$
Selanjutnya, pada Gambar mekanisme kita tarik garis:

\[\overline{O_{14}} \quad \overline{O_{34}} \]

Titik potong garis

\[\overline{O_{12}} \quad \overline{O_{23}} \text{ dan } \overline{O_{14}} \quad \overline{O_{34}} \]

Adalah \(O_{13} \)

Penentuan pusat kecepatan sesaat \(O_{24} \)

\[\overline{O_{12}} \quad \overline{O_{14}} \quad \overrightarrow{O_{24}} \]

\[\overline{O_{23}} \quad \overline{O_{34}} \]

\[\overline{O_{25}} \quad \overline{O_{34}} \]
BAB IV
MENCARI KECEPATAN MENGGUNAKAN PUSAT KECEPATAN SESaat

4.1 Tujuan
Mahasiswa Mampu Memahami dan Mencari Kecepatan Mengunakan Pusat Kecepatan Sesaat dengan Metode 4 Batang Penghubung.

4.2 Prinsip-Prinsip Dasar
Kecepatan sebuah titik pada benda yang berotasi pada suatu pusat rotasi adalah kecepatan sudut benda tersebut dikalikan jarak titik tersebut terhadap pusat rotasinya. Berdasarkan prinsip tersebut maka kecepatan suatu titik pada suatu mekanisme merupakan hasil perkalian antara kecepatan sudut benda tempat titik tersebut berada dengan pusat kecepatan sesaatnya.
Prinsip-prinsip dasar yang harus diperhatikan:

b. Kecepatan linier sebuah titik tegak lurus dengan jari-jari putarannya.

c. Kecepatan sudut yang bersumber pada sebuah pusat kecepatan sesaat adalah sama di semua tempat di dalam benda yang sama. Sebagai ilustrasi, pada Gambar 4.1 tampak titik A dan B yang berada pada benda 2, dengan pusat kecepatan sesaat benda 2 adalah titik O_{12}. Kecepatan titik A adalah kecepatan sudut benda 2 (w_2) dikalikan jari-jari putaran (O_{12} A) sehingga \(V_A = w_2 \cdot O_{12} A \). Kecepatan sudut di titik B juga sama besarnya sehingga kecepatan titik B adalah \(V_B = w_2 \cdot O_{12} B \).
d. Pusat kecepatan sesaat sekutu dari 2 buah benda mempunyai kecepatan translasi yang sama dalam arah dan besarnya.

Dalam pembahasan selanjutnya, kecepatan sudut benda juga merupakan tangen sudut γ. Jadi, kecepatan sudut $w_2 = \tan \gamma_2$, $w_3 = \tan \gamma_3$, dan seterusnya. Berdasarkan prinsip-prinsip dasar tersebut maka melalui pusat kecepatan sesaat tersebut kita dapat mencari kecepatan sudut tiap-tiap benda. Sebagai ilustrasi, akan diperlihatkan contoh berikut ini.

Pada Gambar 4.3 ditunjukkan 3 buah benda pada suatu bidang, yaitu benda 2, 3, dan 4. Benda 1 adalah referensi. Jika kecepatan sudut benda 2 diketahui dengan menggunakan prinsip-prinsip dasar yang telah dijelaskan sebelumnya, kita dapat menentukan kecepatan sudut benda lainnya.
Jika diketahui kecepatan sudut benda 2 dan kita ingin mencari kecepatan sudut benda 3 maka pusat kecepatan sesaat yang kita gunakan adalah \(O_{23} \).

Dengan demikian kecepatan \(V_{O_{23}} \):

\[
V_{O_{23}} = \omega_2 \times \overrightarrow{O_{12}O_{23}}
\]

Jika \(\gamma_3 \) maka dari Gambar kita ketahui :

\[
V_{O_{23}} = \tan \gamma_3 \times \overrightarrow{O_{13}O_{23}} = \omega_3 \times \overrightarrow{O_{13}O_{23}}
\]

Dengan menyamakan persamaan (4.1) dan persamaan (4.2), diperoleh :

\[
\omega_3 = \omega_2 \frac{\overrightarrow{O_{12}O_{23}}}{\overrightarrow{O_{13}O_{23}}}
\]

Untuk mencari kecepatan sudut benda 4 kita dapat menggunakan \(\omega_3 \) atau \(\omega_2 \). Kedua cara tersebut akan dijelaskan sebagai berikut :

1. Mencari \(\omega_4 \) dengan menggunakan \(\omega_2 \).

Pusat kecepatan sesaat yang digunakan adalah \(O_{24} \) seperti terlihat pada Gambar 4.4 sebagai berikut :

Gambar 4.3 Tiga benda yang Terletak Pada Sebuah Bidang
Harga \(\omega_4 \) diperoleh dengan cara sebagai berikut:

\[
\omega_4 = \omega_2 \frac{\omega_{12} \omega_{24}}{\omega_{14} \omega_{24}} \tag{4.4}
\]

2. Mencari \(w_4 \) dengan menggunakan \(w_3 \)

Pusat kecepatan sesaat yang digunakan adalah \(O_{34} \) seperti terlihat pada Gambar 4.5 berikut:

\[
\omega_4 = \omega_3 \frac{\omega_{13} \omega_{34}}{\omega_{14} \omega_{34}} \tag{4.5}
\]
4.3 Mekanisme 4 Batang Hubung

Cara 1:
Mencari kecepatan sudut batang hubung 3 terlebih dahulu.

![Gambar 4.6 Batang Hubung Berputar dengan Kecepatan \(\omega_2 \) Berlawanan Arah Jarum Jam](image)

Karena kecepatan sudut yang diketahui adalah \(\omega_2 \) yang terkait dengan batang hubung 2 dan kecepatan sudut yang dicari adalah \(\omega_3 \) yang terkait dengan batang hubung 3 maka pusat kecepatan sesaat yang digunakan adalah pusat kecepatan sesaat yang terkait dengan batang hubung 2 dan 3. Dengan demikian, pusat kecepatan sesaat yang digunakan untuk mencari \(\omega_3 \) dengan \(\omega_2 \) yang telah diketahui adalah \(O_{12} \), \(O_{13} \) dan \(O_{23} \). Kemudian kita cari pusat kecepatan sesaat sekutu antara batang hubung 2 dan 3, yaitu titik \(O_{23} \) yang juga merupakan titik A sehingga diperoleh:

\[
V_A = \omega_2 \times O_{12} \quad O_{23}
\]

Atau \(V_A = V_{O23} \)
Gambar 4.7 Vektor VA Membentuk Segitiga

Pada Gambar 4.7 terlihat $\overrightarrow{O_{12}O_{13}}$ dan vektor V_A membentuk segitiga sehingga dapat dipakai hubungan trigonometri berikut:

$$
tan \gamma_2 = \frac{V_{O_{23}}}{O_{12}A}
$$

Atau

$$
\omega_2 = tan \gamma_2
$$

Perhatikan Gambar 4.8. Tampak bahwa vektor kecepatan $V_{O_{23}}$ juga terkait dengan batang hubung 3. Kita dapat menentukan kecepatan sudut batang hubung 3 dengan rumus sebagai berikut:

$$
\omega_2 = tan \gamma_3 = \frac{V_A}{O_{12}O_{13}}
$$

Selanjutnya, kita mencari kecepatan sudut batang hubung 4. Pada kasus ini, ω_3 telah diketahui. Dengan demikian, pusat kecepatan sesaat yang digunakan untuk mencari ω_4 dengan ω_3 telah diketahui, yaitu O_{12}, O_{13} dan O_{34}. Setelah itu, kita dapat menentukan kecepatan titik B (O_{34}) yang terkait dengan batang hubung 3 dan 4 sehingga:

$$
V_B = tan \gamma_3 \times \frac{O_{13}O_{34}}{O_{13}O_{34}}
$$
Gambar 4.8 Vektor kecepatan V_{O23} Terkait dengan Batang Hubung 3

\[\omega_4 = \tan \gamma_4 = \frac{V_B}{O_{34} O_{14}} \] (berlawanan arah jarum jam).

Titik C terletak pada batang hubung 3 sehingga kecepatan titik C adalah sebagai berikut:

\[V_C = \tan \gamma_3 \times \frac{O_{13}}{C} \]

Gambar 4.9 Titik C Terletak Pada Batang Hubung 3

Cara 2:

Mencari kecepatan sudut batang hubung 4 terlebih dahulu, kemudian baru mencari kecepatan sudut batang hubung 3.
Pertama-tama, kita tentukan dahulu pusat kecepatan sesaat O_{24} sehingga didapatkan hal berikut:

| Titik A, selain terletak pada batang hubung 3 juga terletak pada batang hubung 2. Titik B, selain terletak ada batang hubung 3 juga terletak pada batang hubung 4. Dengan demi ian, pusat kecepatan sesaat O_{24} dapat digunakan pada persamaan berikut:
| \[V_{O24} = \omega_2 \times \overrightarrow{O_{12}O_{24}} \] |
| kemudian:
| \[\omega_4 = \tan \gamma_4 = \frac{V_{O24}}{O_{24}O_{14}} \] berlawanan arah jarum jam |
| sehingga didapatkan:
| \[V_B = \omega_2 \times \overrightarrow{O_{14}O_{34}} \] |

Contoh Soal:

1. Pada mekanisme berikut, jika batang hubung 2 berputar dengan kecepatan sudut 1.000 rpm berlawanan arah jarum jam maka tentukanlah:
 a. Kecepatan sudut 4 dan batang hubung 5.
 b. Kecepatan titik C.
Gambar 4.10 Batang Hubung O_{12} Berputar dengan Kecepatan Sudut 1.000 rpm Berlawanan Arah Jarum Jam

Solusi:

Skala Gambar adalah 1:10 maka:

$\overline{O_{12} O_{24}} = 0,14 \text{ m}$

$\overline{O_{13} O_{22}} = 0,67 \text{ m}$

$\overline{O_{13} B} = 0,58 \text{ m}$

$\overline{O_{15} O_{12}} = 0,49 \text{ m}$

$\overline{O_{15} B} = 0,2 \text{ m}$

$\overline{O_{15} C} = 0,06 \text{ m}$

$\overline{O_{25} O_{15}} = 0,81 \text{ m}$

Cara 1:

$\omega_2 = 1000 \times \frac{2\pi}{60} = 104,72 \text{ rad/s}$

$V_B = \omega_2 \times \overline{O_{12} O_{23}}$

$= 104,72 \times 0,14 \text{ = 14,66 m/s}$
Karena titik A dan B terletak pada batang hubung 3 maka tentukan dahulu pusat kecepatan sesaat \(O_{13} \) yang merupakan pusat gerakan batang hubung 3 sehingga:

\[
tan \gamma_3 = \frac{V_A}{O_{13} \circ O_{23}}
\]

\[
\frac{14,66}{0,67} = 21,88 \text{ rad/s}
\]

di mana:

\(\omega_2 = tan \gamma_3 = 21,88 \text{ rad/s} \)

searah jarum jam

dan

\(V_B = tan \gamma_3 \times \overline{O_{13}B} \)

\(= 21,88 \times 0,58 = 12,69 \text{ m/s} \)

Titik B dan titik C terletak pada batang hubung 5. Oleh karena itu, tentukan dahulu titik pool \(O_{15} \) yang merupakan pusat gerakan batang hubung 5 sehingga:

\[
\omega_2 = tan \gamma_5 = \frac{V_B}{O_{15} \circ B}
\]

\[
\frac{12,69}{0,2} = 63,45 \text{ rad/s}
\]

berlawanan arah jarum jam

\(V_B = tan \gamma_5 \times \overline{O_{15}C} \)

\(= 63,45 \times 0,66 = 3,8 \text{ m/s} \)
Cara 2:
Selain terletak pada batang hubung 2, titik A juga terletak pada batang hubung 3. Adapun titik B dan titik C terletak pada batang hubung 5. Oleh karena itu, O_{25} dapat digunakan:

$$V_{O25} = \omega_2 \frac{O_{12}}{O_{25}}$$
$$= 104,72 \times 0,49 = 51,31 \text{ m/s}$$

maka:

$$\omega s = \tan \gamma_5 = \frac{V_{O25}}{O_{25} O_{15}}$$
$$= \frac{51,31}{0,81} = 63,34 \text{ rad/s}$$

Sehingga didapatkan:

$$V_C = \omega_5 \times O_{15} \overline{C}$$
$$= 63,34 \times 0,06 = 3,8 \text{ m/s}$$
BAB V
MENENTUKAN KECEPATAN MENGUNAKAN PERSAMAAN KECEPATAN RELATIF

5.1 Tujuan
a. Mahasiswa mampu menentukan kecepatan menggunakan persamaan kecepatan linier.
b. Mahasiswa mampu menentukan kecepatan menggunakan persamaan metode bayangan.
c. Mahasiswa mampu menentukan kecepatan menggunakan persamaan kecepatan sudut.
d. Mahasiswa mampu menentukan kecepatan menggunakan persamaan kecepatan titik berimpit.

5.2 Kecepatan Linier
Kecepatan suatu titik atau partikel merupakan besaran vektor sehingga dalam analisis kecepatan kita dapat menggunakan kaidah-kaidah yang berkenaan dengan aturan-aturan operasi vektor. Analisis vektor dapat dilakukan, baik secara analitis maupun grafis. Secara analitis, dapat digunakan metode koordinat kartesian atau metode bilangan kompleks. Dalam hal ini, kecepatan diperoleh dangan mendiferensiasikan persamaan posisi terhadap waktu \(t \) (persamaan posisi merupakan fungsi waktu \(t \)).

Berikut ini akan diberikan contoh penentuan kecepatan dengan menggunakan persamaan vektor kecepatan secara grafis. Pada Gambar 5.1 tampak mekanisme engkol peluncur. Kita umpamakan kecepatan sudut batang hubung 2 adalah \(\omega_2 \) berlawan arah jarum jam. Arah dan besaran kecepatan titik A terletak pada batang hubung 2 yang berputar terhadap satu titik tetap \(O_{12} \), dengan \(V_A = \vec{O}_{12} \times A \times \omega_2 \) (\(\vec{O}_{12} \) adalah jari-jari titik A terhadap pusat rotasi tetap).

Gambar 5.1 Mekanisme Engkol Peluncur
Arah kecepatan titik B sejajar garis x dan arah kecepatan relatif titik B terhadap titik A ($V_{B/A}$) adalah tegak lurus AB. Titik A dimodelkan sebagai titik tetap dan kecepatan $V_{B/A}$ berpusat pada titik A seperti diuraikan pada Gambar 5.2.

Gambar 5.2 Titik A Dimodelkan sebagai Titik Tetap dan Kecepatan $V_{B/A}$ Berpusat pada titik A

Kecepatan titik B dapat ditentukan menggunakan persamaan kecepatan relatif berikut:

$$V_B = V_A \longrightarrow V_{B/A}$$

di mana:

$a =$ arahnya diketahui

$b =$ besar vektor diketahui

Sebagai pelengkap contoh, kita anggap kecepatan sudut ω_2 adalah 30 rad/s dan skala Gambar 5.2 adalah 1:10. Dari skala tersebut, dapat kita ketahui dimensinya:

$\overline{O_2B} = 30 \text{ cm} \ ; \ \overline{AB} = 56 \text{ cm}$

Kecepatan titik A diperoleh sebagai berikut:

$V_A = 30 \text{ rad/s} \times 0,3 \text{ m} = 9 \text{ m/s}$

Poligon kecepatannya dibuat dengan langkah sebagai berikut:

Langkah 1:

Menggambarkan vektor kecepatan yang sudah diketahui arah dan besarnya, yaitu V_A dengan skala tertentu, misalkan 2 m/s/cm. Dengan demikian, panjang vektor V_A adalah 4,5 cm.
Langkah 2:
Menggambarkan vektor kecepatan absolut yang diketahui arahnya, yaitu V_B.

Langkah 3:
Menggambarkan vektor kecepatan relatif titik B terhadap titik A (V_B).

Sehingga diperoleh poligon kecepatan sebagai berikut:
5.3 Metode Bayangan

Jika batang hubung (link) 3 diperluas menjadi ΔABC seperti pada Gambar 5.3 berikut:

![Gambar 5.3 Batang Hubung (Link) 3 Diperluas Menjadi ΔABC](image)

Maka kecepatan V_c dapat di tentukan dengan memproyeksikan batang hubung ABC dalam bentuk poligon kecepatan seperti terlihat pada Gambar 5.4 berikut:

![Gambar 5.4 Kecepatan Vc Ditentukan dengan Memproyeksikan Batang Hubung ABC dalam Bentuk Poligon Kecepatan](image)

5.4 Kecepatan Sudut

Kecepatan sudut suatu batang (link) sama dengan kecepatan relatif sebuah titik terhadap titik lain yang sama dibagi dengan jarak kedua titik tersebut. Dengan melihat contoh tersebut maka kecepatan sudut batang hubung 3 (link 3) :

$$\omega_{3/1} = \frac{V}{R} = \frac{V_{B/A}}{A \overrightarrow{B}}$$

(5.1)
5.5 Kecepatan Titik Berimpit

Pada Gambar berikut tampak suatu mekanisme 4 batang hubung. Pada titik B terdapat 3 buah titik yang berimpit, yaitu titik B_2, B_3 dan B_4. Ketiga titik tersebut menotasikan bahwa B_2 adalah titik B milik batang hubung 2, serta B_3 dan B_4 yang masing-masing merupakan milik batang hubung 3 dan 4.

Dalam hal ini, kita mendapatkan dua informasi. Pertama, kecepatan titik B_2 dan B_3 adalah sama besar dan sama arah. Kedua, kecepatan sudut batang hubung 3 dan 4 adalah sama besar dan sama arahnya. Dengan menerapkan persamaan kecepatan, diperoleh:

$$ V_{B_3} = V_{B_4} \quad \rightarrow \quad V_{B_{3/4}} $$

Setelah poligon kecepatan diGambarkan maka kita dapat menentukan kecepatan sudut batang hubung 3 dan batang hubung 4.
Contoh Soal:
1. Pada Gambar berikut terlihat suatu mekanisme dengan 4 batang hubung. Jika batang hubung 2 berputar dengan kecepatan sudut 1.000 rpm searah jarum jam maka tentukanlah:
 a. Kecepatan titik A dan B.

Solusi:
Dari skala Gambar:
\[\overline{O_{12}A} = 0,11 \, m \quad \overline{O_{14}A} = 0,145 \, m \]
\[\overline{AB} = 0,21 \, m \]
Analisa kecepatan:
\[V_A = \omega^2 \times \overline{O_{12}A} \]
\[= 60 \, \text{rad/s} \times 0,11 \, m = 6,6 \, \text{m/s} \]
\[V_A = V_A + V_{B/A} \]

\[A, b \perp O_{14}B \perp AB \]

Dari poligon kecepatan didapat:

\[V_B = 5,8 \text{ m/s} \quad \text{dan} \quad V_{B/A} = 6,4 \text{ m/s} \]

![Diagram of velocity vectors](image)

Harga-harga kecepatan sudut:

\[\omega_3 = \frac{V_{B/A}}{AB} = \frac{6,4}{0,21} = 30,47 \text{ rad/s} \]

\[\omega_4 = \frac{V_B}{O_{14}B} = \frac{5,8}{0,145} = 30,47 \text{ rad/s} \]
BAB VI
MENENTUKAN PERCEPATAN MENGGUNAKAN PERSAMAAN PERCEPATAN RELATIF

6.1 Tujuan

a. Mahasiswa mampu menentukan percepatan menggunakan persamaan percepatan normal dan percepatan tangensial.
b. Mahasiswa mampu menentukan percepatan menggunakan metode bayangan.
c. Mahasiswa mampu menentukan percepatan menggunakan persamaan percepatan sudut.
d. Mahasiswa mampu menentukan percepatan menggunakan persamaan percepatan titik berimpit.
e. Mahasiswa mampu menentukan percepatan menggunakan persamaan mekanisme kontak menggelinding.
f. Mahasiswa mampu menentukan percepatan menggunakan titik bantu untuk analisa mekanisme kompleks.

6.2 Pendahuluan

Percepatan merupakan komponen yang harus diketahui dalam perancangan mesin karena mempunyai pengaruh yang signifikan terhadap gaya-gaya dinamik yang bekerja pada elemen-elemen mesin dan sekaligus juga memberikan efek getaran pada suatu mekanisme. Metode yang digunakan dalam analisis percepatan hampir sama dengan yang digunakan pada analisis kecepatan yang telah dibahas pada Bab V. Perbedaannya adalah setiap komponen percepatan terdiri dari dua komponen, yaitu komponen tangensial dan komponen normal. Arah komponen percepatan tangensial suatu titik adalah tegak lurus dengan vektor yang menghubungkan titik tersebut dengan pusat putaran dan arah percepatan normal menuju pusat putaran. Adapun kecepatan hanya terdapat komponen tangensial. Dalam penggambaran poligon, percepatan kita notasikan kutubnya dengan \(\dot{O}_A \). Dengan demikian, seluruh komponen percepatan yang ditarik dari \(\dot{O}_A \) adalah percepatan mutlak.
6.3 Percepatan Normal dan Percepatan Tangensial

Untuk menjelaskan percepatan normal dan tangensial suatu titik, perhatikan Gambar 6.1. Garnbar tersebut memperlihatkan suatu batang hubung yang berputar dengan kecepatan sudut \(\omega \) dan percepatan sudut \(\alpha \)

Gambar 6.1 Batang hubung Yang Berputar dengan Kecepatan Sudut \(\omega \) dan Percepatan Sudut \(\alpha \)

Pada Gambar tersebut diuraikan bahwa percepatan absolut titik A:

\[
A_A = A_A^n + \rightarrow A_A^t
\]

\[\parallel \overline{O_{12}A} \perp \overline{O_{12}A}\]

komponen percepatan normal:

\[
A_A^n = \frac{V_A^2}{\overline{O_{12}A}} = \omega^2 \times \overline{O_{12}A}
\]

dan percepatan tangensial:

\[
A_A^t = \alpha \times \overline{O_{12}A}
\]

Untuk lebih memahami penerapan persamaan percepatan relatif pada mesin atau mekanisme, perhatikan Gambar 6.2. Gambar tersebut merupakan suatu mekanisme motor bakar 1 silinder berikut poligon kecepatannya dengan batang hubung 2 berputar berlawanan arah jarum jam dan dengan kecepatan tetap. Kita akan mencari percepatan linier titik b dan percepatan sudut batang hubung 3.
Penguraian persamaan percepatan relatif adalah sama seperti penguraian persamaan kecepatan relatif:

\[A_B = A^{r+I}_A \Rightarrow A^{n+I}_{B/A} \]
\[A_B = A^n_A \Rightarrow A^n_{B/A} \Rightarrow A^I_{B/A} \]
\[\parallel x \quad a, b \quad a, b \quad \perp AB \]

(6.2)

Adapun untuk menggambarkan poligon percepatannya, kita lakukan langkah berikut:

Langkah 1:

Pertama-tama, perhatikan batang hubung 2 yang berputar dengan kecepatan tetap sehingga percepatan di titik A dapat dapat ditentukan sebagai berikut:

\[A_A = A^n_A \rightarrow A^t_A \]
\[\parallel \overline{O_{12}A} \perp \overline{O_{12}A} \]

(6.3)

\(A^n_A \) Adalah percepatan normal yang arahnya menuju pusat lintasan yang besarnya:

\[A^n_A = \frac{V_A^2}{R_2} = \frac{V_A^2}{\overline{O_{12}A}} \]

(6.4)

Gambar 6.2 Mekanisme Motor Bakar 1 Silinder Berikut Poligon Kecepatannya

Gambar 6.3 Percepatan Normal Mengarah Pusat Lintasan
\[A_A^t = \text{percepatan tangensial yang arahnya tegak lurus terhadap percepatan normal} \]
\[= \alpha \times R = O_{12} A \times \alpha_2 \]
\[= \text{percepatan sudut} = 0 \]

Oleh karena itu, \(A_A^t = 0 \)

Adapun percepatan titik B dapat kita ketahui, yaitu hanya berupa percepatan tangensial yang arahnya sama dengan kecepatannya sehingga pada tahap awal penggambaran poligon percepatan, kita Gambar bentuk seperti yang terlihat pada Gambar 6.4

\[\text{arah } A_B' \text{ atau } A_B \]

Gambar 6.4 Tahap Awal Penggambaran Poligon Percepatan

Langkah 2:

Perhatikan batang hubung 3. Di situ, terlihat percepatan relatif B terhadap titik A yang terdiri dari percepatan normal dan percepatan tangensial, yang dapat ditentukan sebagai berikut:

\[A_{B/A} = A_{B/A}^n + A_{B/A}^t \]

\[a, b \perp \overrightarrow{AB} \]

Adalah percepatan normal titik B relatif titik A yang arahnya menuju pusat lintasan yang besarnya:

\[A_{B/A}^n = \frac{V_{B/A}^2}{\overrightarrow{AB}} \]

Kemudian kita tambahkan vector \(A_{B/A}^n \) pada poligon kecepatan yang telah dibuat pada Gambar 6.4. Selanjutnya, tambahkan garis yang tegak lurus \(A_{B/A}^n \) yang merupakan arah \(A_{B/A}^t \) sehingga dihasilkan bentuk poligon percepatan sebagai berikut:
Gambar 6.5 Bentuk Setelah Ditambahkan Garis Tegak Lurus $A_B^{n/A}$ yang Merupakan Arah $A_{B/A}^t$

Gambar 6.6 Poligon Percepatan

6.4 Metode Bayangan

Jika batang hubung 3 diperluas ΔABC seperti terlihat pada Gambar berikut ini maka percepatan titik ditentukan dengan memproyeksikan batang hubung 3 dalam bentuk poligon percepatan.
Percepatan sudut suatu batang hubung adalah percepatan tangensial relatif sebuah titik terhadap titik lain pada batang hubung yang sama dibagi dengan jarak kedua titik tersebut. Untuk mengetahui percepatan sudut batang hubung 3 dan karena titik A dan B terletak pada batang hubung 3 maka perhatikan percepatan relatif B terhadap A atau sebaliknya, percepatan A relatif B. Dari poligon percepatan pada Gambar 6.8, dapat kita ketahui percepatan titik B relatif titik A. Sesuai Gambar 6.9, percepatan sudut batang hubung 3 dapat langsung diketahui:

\[\alpha_3 = \frac{\dot{V}_{B/A}}{\dot{B} \dot{A}} \]
6.6 Percepatan Titik Berimpit

Jika suatu titik pada sebuah benda bergerak sepanjang alur tertentu pada benda lain dan benda lain tersebut berputar maka titik tersebut akan memiliki komponen Coriolis

Pada Gambar berikut terlihat batang hubung 2 berputar dengan kecepatan tetap dari posisi DF ke DE' dalam waktu dt. Selama waktu tersebut slider (batang hubung 3) bergerak sepanjang batang hubung 2 yang bergerak dengan kecepatan konstan v dari posisi K_3 ke K_3'. Jika \(\omega_2 \) konstan maka perpindahan K_3 ke K_3' terdiri dari:

![Gambar 6.10 Batang Hubung 2 Berputar Dengan Kecepatan Tetap dari Posisi DF ke DE' Dalam Waktu dt](image)

Gambar 6.10 Batang Hubung 2 Berputar Dengan Kecepatan Tetap dari Posisi DF ke DE' Dalam Waktu dt
Gerakan slider dari \(K_3 \rightarrow K'_2 \) adalah akibat rotasi.

Gerakan slider dari \(K'_2 \rightarrow P \) adalah akibat kecepatan \(v \).

Gerakan slider dari \(P \rightarrow K'_2 \) adalah akibat percepatan tegak lurus batang hubung 2.

Dengan demikian, perpindahan silinder dari \(P \rightarrow K'_3 \) adalah akibat percepatan coriolis yang dapat ditulis dengan persamaan:

\[
P \cdot K'_3 = \mathbf{L} \cdot K'_3 - K_2 K'_2
\]

\[
P \cdot K'_3 = \mathbf{L} \cdot D \, d\theta - K_2 D \, d\theta
\]

\[
= K'_2 \cdot \mathbf{P} \, d\theta
\]

\[
= v \, dt \cdot \omega \, dt
\]

\[
= V \cdot \omega \cdot dt^2
\]

Karena percepatan sudut batang hubung 2 tidak ada maka dengan mengingat rumus mekanika \(S = (a/2) \cdot dt^2 \):

\[
P \cdot K'_3 = \frac{1}{2} \cdot A \cdot dt^2
\]

Dengan mensubstitusikan persamaan (6.5) pada persamaan (6.6) maka:

\[
\frac{1}{2} \cdot A \cdot dt^2 = V \cdot \omega \cdot dt^2
\]

\[
A = 2 \cdot V \cdot \omega
\]
Dengan demikian, percepatan coriolis pada kasus slider tersebut:
\[A_{K3/2}^C = 2 V_{K3/2} \omega_{1/2} \]

6.7 Mekanisme Kontak Menggelinding

Pada subbab ini akan di jelaskan lintasan suatu benda yang menggelinding murni tanpa gesekan pada bidang rata atau terbentuk lingkaran. Gerakan menggelinding dibedakan berdasarkan lintasannya, antara lain:

\[A_{D2} = A_C \rightarrow A_{D2/C} \]
\[A_{D2} = A^{a}_{D2} = A^a_{C \rightarrow a,b} \rightarrow A^n_{D2/C \rightarrow a,b} \rightarrow A^l_{D2/C \rightarrow a,b} \]

Gambar 6.12 Lintasan Cembung

Dengan komponen-komponen percepatan sebagai berikut:

\[A^n_C = \frac{v^2_C}{R + r} = \frac{(\omega^2 r)^2}{R + r} \]
\[A^l_C = C \cdot D_2 \cdot \alpha_2 \]
\[A^n_{D2/C} = \frac{C}{D_2} \cdot \omega_2 \]
\[A^l_{D2/C} = \frac{C}{D_2} \cdot \alpha_2 \]

Dari poligon percepatan diperoleh:
\[A_{D21}^n = A_{D2/C}^n \quad \rightarrow \quad A_C^n \]
\[A_{D21}^n = \frac{C}{D_2} \cdot \alpha \cdot \left(\frac{\omega_r}{R+r} \right)^2 \]
\[A_{D21}^n = r \cdot \omega_r^2 \cdot \left(\frac{\omega_r}{R+r} \right) = \omega_r^2 \left(1 - \frac{r}{R+r} \right) \]
\[A_{D21}^n = \omega_r^2 \left(\frac{R+r - \frac{r}{R+r}}{R+r} \right) = \omega_r^2 \frac{rR}{R+r} \]

Lintasan Pada Permukaan Cekung

Gambar 6.13 Lintasan Cekung

Sehingga:

\[A_C^n = \frac{V_C^2}{R-r} = \frac{(\omega_r)^2}{R-r} \]

\[A_{D21}' = A_{D21/C}^n \quad \rightarrow \quad A_C' \]
\[A_{D21}' = \frac{C}{D_2} \cdot \alpha \cdot \left(\frac{\omega_r}{R-r} \right)^2 \]
\[A_{D21}' = r \cdot \omega_r^2 \cdot \left(\frac{\omega_r}{R-r} \right) = \omega_r^2 \left(1 + \frac{r}{R-r} \right) \]
\[A_{D21}' = \omega_r^2 \left(\frac{R-r + \frac{r}{R-r}}{R-r} \right) = \omega_r^2 \frac{Rr}{R-r} \]
Lintasaan Pada Permukaan Datar
Lintasan ini terjadi akibat gerakan lingkaran pada sisi batang datar sehingga percepatan normal titik C:

\[
\begin{align*}
A_C^n &= \frac{V_C^2}{\omega} = 0 \\
A_{D21}^n &= A_{D21/C}^n \\
A_{D21}^n &= \overline{C - D_2} \omega_2^2 \\
A_{D21}^n &= r \omega_2^2
\end{align*}
\]

Gambar 6.14 Lintasan Datar

6.8 Penggunaan Titik Bantu Untuk Analisis Mekanisme Kompleks
Dalam melakukan analisis kinematika, kadangkala persamaan yang diperoleh tidak cukup untuk mendapatkan variable kecepatan dan percepatan suatu titik. Hal ini sering kali dijumpai pada mekanisme yang kompleks. Sebagai ilustrasi, kita akan melakukan analisis grafis untukmekanisme yang terlihat pada Gambar. Misalkan batang hubung dua berputar dengan kecepatan sudut 600 rpm searah jarum jam dengan kecepatan konstan dan kita akan menentukan kecepatan dan percepatan sudut batang hubung 3,4,5 dan 6,serta kecepatan dan percepatan titik A,B,C,D, dan E.
Gambar 6.15 Batang Hubung 2 Berputar Dengan Kecepatan Sudut 600 rpm Searah Jarum Jam Dengan Kecepatan Kecepatan Konstan

Solusi:
Dari skala Gambar:
\[
\begin{align*}
\overrightarrow{O_2A} &= 0,2 \text{ m} \\
\overrightarrow{DB} &= 0,53 \text{ m} \\
\overrightarrow{AB} &= 0,53 \text{ m} \\
\overrightarrow{BC} &= 0,29 \text{ m} \\
\overrightarrow{AE} &= 0,53 \text{ m} \\
\overrightarrow{O_2C} &= 0,49 \text{ m} \\
\overrightarrow{BE} &= 0,19 \text{ m} \\
\overrightarrow{CD} &= 0,45 \text{ m}
\end{align*}
\]

Pada tahap awal, kita akan mencari kecepatan titik A sebagai berikut:
\[
V_A = \omega_2 \times \overrightarrow{O_2A} = 62,83 \text{ rad/s} \times 0,2 \text{ m} = 12,5 \text{ m/s}
\]
Lalu kita cari kecepatan titik B berdasarkan prinsip-prinsip vektor berilut:
\[V_B = V_B \rightarrow V_{B/A} \quad (6.7)\]
\[\text{?} \quad a, b \perp \overrightarrow{AB}\]

Tampak bahwa persamaan tersebut tidak dapat disesuaikan karena terdapat 3 variabel yang tak diketahui. Oleh karena itu, untuk menyelesaikan persamaan tersebut, diperlukan persamaan tambahan yang terkait dengan titik B. Terlihat dari Gambar bahwa titik B ada pada batang hubungan 3 dan 4, sedangkan persamaan (6.1) merupakan persamaan kecepatan yang terkait dengan batang hubung 3 (titik A dan B ada pada benda 3). Dengan demikian, kita akan menambahkan persamaan yang terkait dengan titik B. Pada kasus ini, kita memilih batang hubung 4 karena persamaan (6.6) terkait dengan batang hubung 3. Adapun syarat dalam pemilihan titik bantu, antara lain:
a. Arah kecepatan absolut suatu titik bantu harus diketahui. Misalkan, titik bantu tersebut adalah X4. karena kecepatan arah titik D sudah diketahui maka kita tarik garis LD yang tegak lurus dengan arah VD sehingga Vx4// VD dan letak titik bantu terletak padasepanjang garis LD.

b. Arah kecepatan relatif dengan titik yang tidak diketahui arah dan besar kecepatannya (dalam hal ini, titik B) sama dengan kecepatan relatif pada persamaan sebelumnya (dalam hal ini, VB/A L AB). kecepatan titik B relatif terhadap titik X4 harus sama dengan VB/A L AB sehingga pada titik X4 diperoleh perpotongan antara garis tegak lurus lintasan batang hubung 6 dan garis AB yang merupakan perluasan batang hubung 4 seperti terlihat pada Gambar berikut:

Dari Gambar diperoleh

\[BX_4 = 1,05 \text{ m} ; \quad CX_4 = 1,21 \text{ m} \]
\[DX_4 = 0,9 \text{ m} \]

Karena DX4 adalah garis tegak lurus dengan VD maka Vx4 // VD sehingga:

\[V_{X4} = V_B \rightarrow \overrightarrow{V_{X4/B}} \]
\[\overset{\parallel}{/} V_D \quad \perp \quad A \ B \]

Dengan mensubstitusijan persamaan (6.7) pada persamaan (6.8) maka:
Dari persamaan di atas, diperoleh besar dan arah Vx4. Selanjutnya, kita cari arah dan besar kecepatan VC dan VD berturut-turut sebagai berikut:

\[\begin{align*}
V_{x4} & = V_A \perp V_{kx4} \\
\perp V_D & a, b \quad \perp A \quad B \\
V_C & = V_D \perp V_{CD} \\
\perp a, b & a \quad \perp C \quad D \\
\end{align*} \]

(6.10)

(6.11)

Kecepatan titik B didapat dari metode bayangan sehingga dari persamaan-persamaan tersebut didapatkan poligon kecepatan.

Harga-harga kecepatan:

\[\begin{align*}
V_C & = 3,7 \times 2 \text{ m/s} \quad = 7,4 \text{ m/s} \quad ; \quad V_D & = 3,2 \times 2 \text{ m/s} \quad = 6,4 \text{ m/s} \\
V_B & = 6,1 \times 2 \text{ m/s} \quad = 12,2 \text{ m/s} \quad ; \quad V_E & = 7 \times 2 \text{ m/s} \quad = 14 \text{ m/s} \\
V_{x4/C} & = 12,7 \times 2 \text{ m/s} \quad = 25,4 \text{ m/s} \quad ; \quad V_{x4/B} = 10,4 \times 2 \text{ m/s} \quad = 20,8 \text{ m/s} \\
\end{align*} \]
\[V_{AB} = 9,4 \times 2 \text{ m/s} = 18,8 \text{ m/s} \]
\[V_{BC} = 2 \times 2 \text{ m/s} = 4 \text{ m/s} \]
\[V_{X4} = 12,8 \times 2 \text{ m/s} = 25,6 \text{ m/s} \]
\[V_{DC} = 4,7 \times 2 \text{ m/s} = 9,4 \text{ m/s} \]

Harga-harga kecepatan sudut:
\[\omega_2 = \frac{V_{B \rightarrow A}}{AB} = \frac{4}{0,53} \text{ rad/s} \]
\[= 7,54 \text{ rad/s} \]
\[\omega_3 = \frac{V_{D \rightarrow C}}{DC} = \frac{9,4}{0,45} \text{ rad/s} \]
\[\omega_5 = \frac{V_C}{OC} = \frac{7,4}{0,49} \text{ rad/s} \]
\[= 15,1 \text{ rad/s} \]
\[\omega_b = 0 \text{ rad/s} \]

Analisis percepatan:
\[A_A = A_A^n = \frac{V_A^2}{O_2 A} = \frac{12,5^2}{0,2} \text{ m/s}^2 = 781,25 \text{ m/s}^2 \]
\[A_{B/A} = \frac{V_{B/A}^2}{AB} = \frac{4^2}{0,53} \text{ m/s}^2 = 30,18 \text{ m/s}^2 \]
\[A_C = \frac{V_C^2}{OC} = \frac{7,4^2}{0,49} \text{ m/s}^2 = 111,75 \text{ m/s}^2 \]
\[A_{X4/C} = \frac{V_{X4/C}^2}{X3C} = \frac{25,2^2}{1,21} \text{ m/s}^2 = 524,82 \text{ m/s}^2 \]
\[A^a_{X/4/B} = \frac{V^2_{X/4/B}}{X_4B} = \frac{20.8^2}{1.05} \text{ m/s}^2 = 412.03 \text{ m/s}^2 \]
\[A^a_{X/4/D} = \frac{V^2_{X/4/D}}{X_4D} = \frac{18.8^2}{0.9} \text{ m/s}^2 = 392.71 \text{ m/s}^2 \]
\[A^a_{C/D} = \frac{V^2_{X/C/D}}{C_D} = \frac{9.4^2}{0.45} \text{ m/s}^2 = 196.35 \text{ m/s}^2 \]

Selanjutnya. Untuk menyelesaikan persamaan percepatan dapat dilakukan dilakukannya langkah berikut:

\[A_B = A^a_A \leftrightarrow A^{\prime \prime}_{B/A} \leftrightarrow A^{\prime}_{B/A} \]
\[? \quad a,b \quad a,b \quad \bot AB \quad (6.12) \]

\[A_{X4} = A_B \leftrightarrow A^{\prime \prime}_{X4/B4} \leftrightarrow A^{\prime \prime}_{X4/B4} \]
\[? \quad \bot AB \quad \bot AB \quad (6.13) \]

Subtitusi persamaan (6.12) pada persamaan (6.13) menghasilkan persamaan berikut:

\[A_{X4} = A_A \leftrightarrow A^{\prime \prime}_{B/A} \leftrightarrow A^{\prime}_{B/A} \leftrightarrow A^{\prime}_{X4/B4} \leftrightarrow A^{\prime \prime}_{X4/B4} \]
\[? \quad a,b \quad a,b \quad \bot AB \quad \bot AB \quad a,b \quad (6.14) \]

\[A_{X4} = A_D \leftrightarrow A^{\prime \prime}_{X4/D4} \leftrightarrow A^{\prime}_{X4/D4} \]
\[? \quad \parallel V_D \quad a,b \quad \parallel V_D \quad (6.15) \]

Dengan menyamakan persamaan (6.14) Dan Persamaan (6.15), yang dalam hal ini bagian kiri persamaan (6.14)digantikan dengan bagian kanan persamaan (6.15) maka:

\[A_D \leftrightarrow A^{\prime \prime}_{X4/D4} \leftrightarrow A^{\prime \prime}_{X4/D4} = A_A \leftrightarrow A^{\prime \prime}_{B/A} \leftrightarrow A^{\prime}_{B/A} \leftrightarrow A^{\prime}_{X4/B4} \leftrightarrow A^{\prime \prime}_{X4/B4} \]
\[\parallel V_D \quad \parallel V_D \quad a,b \quad a,b \quad a,b \quad \bot AB \quad \bot AB \quad a,b \]

atau

\[\text{Vektor} \parallel V_D \leftrightarrow A^{\prime \prime}_{X4/B4} = A_A \leftrightarrow A^{\prime \prime}_{B/A} \leftrightarrow A^{\prime \prime}_{X4/B4} \leftrightarrow \text{Vektor} \quad \bot AB \quad (6.16) \]

Persamaan (6.16) menghasilkan harga \(A_{X4} \) sehingga:
Setelah arah dan besaran \(A_{C4} \) diketahui:

\[
A_{D4} = A_{C4} \rightarrow A_{D4/C4} \rightarrow A'_{D4/C4}
\]

\(\parallel V_D \) \(a, b \) \(a, b \) \(\perp D C \) (6.18)

\(A_B \) dan \(A_E \) dipadatkan dari metode bayangan sehingga diperoleh polygon percepatan. Pengukuran polygon percepatan tersebut akan menghasilkan harga-harga percepatan berikut:

\[
\begin{align*}
A_B & = 255 \text{ m/s}^2 : \quad A_C = 247,5 \text{ m/s}^2 \\
A_D & = 97,5 \text{ m/s}^2 : \quad A_E = 532,5 \text{ m/s}^2 \\
A'_{C} & = 225 \text{ m/s}^2 : \quad A'_{D/C} = 187,5 \text{ m/s}^2 \\
A'_{B/A} & = 727,5 \text{ m/s}^2
\end{align*}
\]

Skala percepatan 1 cm = 81 m/s
Harga – harga percepatan sudut:

\[a_3 = \frac{A_1B/A}{A B} = 727,5 \text{ rad/s}^2 \]
\[= 1372,64 \text{ rad/s}^2 \]

\[a_4 = \frac{A_1D/C}{A B} = 187,5 \text{ rad/s}^2 \]
\[= 416,67 \text{ rad/s}^2 \]

\[a_5 = \frac{O_{15}C}{0,49} = 25,5 \text{ rad/s}^2 \]
\[= 520,408 \text{ rad/s}^2 \]
\[a_6 = 0 \text{ rad/s}^2 \]

Pemakaian Titik Bantu yang Lain

Pada kasus ini, dapat dipilih titik bantu yang lain, yaitu titik yang merupakan perpotongan antara garis tegak lurus batang hubung 5 (arah kecepatan titik C) dan garis AB yang merupakan perluasan batang hubung 4 seperti terlihat pada Gambar berikut:
Analisis kecepatan:

\[V_B = V_A \rightarrow V_{B/A} \]

\[\begin{align*}
? & a,b \quad \perp AB
\end{align*} \] \hspace{1cm} (6.19)

Karena \(CY_4 \) adalah garis tegak lurus dengan batang hubung 5 maka \(V_c \) maka \(V_{Y4} / V_c \) sehingga:

\[V_{Y4} = V_B \rightarrow V_{Y4/B} \]

\[? \quad a,b \quad \perp AB \] \hspace{1cm} (6.20)

Dengan mensubstitusikan persamaan (6.19) pada persamaan (6.20) maka:

\[\begin{align*}
V_{Y4} & = V_A \rightarrow V_{B/A} \rightarrow V_{Y4/B} \\
\perp O_5C & a,b \quad \perp A \quad B \quad \perp A \quad B
\end{align*} \] \hspace{1cm} (6.21a)

atau

\[\begin{align*}
V_{Y4} & = V_A \rightarrow \text{Vektor} \rightarrow \perp A \quad B \\
\perp O_5C & a,b
\end{align*} \] \hspace{1cm} (6.21b)

Persamaan (6.21) menghasilkan harga \(V_{Y4} \) sehingga:

\[\begin{align*}
V_{Y4} & = V_D \rightarrow V_{Y4/D} \\
a,b & a \quad \perp Y_4 \quad D
\end{align*} \] \hspace{1cm} (6.22)

atau

\[\begin{align*}
V_D & = V_c \rightarrow V_{D/C} \\
a,b & \perp O_5C \quad \perp C \quad D
\end{align*} \] \hspace{1cm} (6.23)
Metode banyangan menghasilkan kecepatan titik B dan persamaan-persamaan tersebut menghasilkan poligon kecepatan. Untuk analisis kecepatan selanjutnya, silahkan kerjakan sendiri sebagai latihan.

Analisis kecepatan:
Untuk menyelesaikan persamaan percepatan, dapat dilakukan langkah-langkah sebagai berikut:

\[A_B = A_A^n \rightarrow A_{B/A}^n \rightarrow A_{B/A}^n \]
\[? \quad a,b \quad a,b \quad \perp A \quad B \quad \text{ (6.24)} \]

atau

\[A_{Y4} = A_B \rightarrow A_{Y4/B4}^n \rightarrow A_{Y4/B4}' \]
\[? \quad ? \quad a,b \quad \perp A \quad B \quad \text{ (6.25)} \]

Substitusi persamaan (6.24) pada persamaan (6.25) menghasilkan persamaan berikut:

\[A_{Y4} = A_A^n \rightarrow A_{B/A}^n \rightarrow A_{B/A}' \rightarrow A_{Y4/B4}' \rightarrow A_{Y4/B4}^n \]
\[? \quad a,b \quad a,b \quad \perp A \quad B \quad \perp A \quad B \quad a,b \quad \text{ (6.26)} \]

atau

\[A_{Y4} = A_C^n \rightarrow A_{Y4/C4}^n \rightarrow A_{C}^n \rightarrow A_{Y4/C4}' \]
\[? \quad a,b \quad A,B \quad \perp A \quad B \quad \perp A \quad B \quad \text{ (6.27)} \]

Persamaan (6.26) dan (6.27) menghasilkan (6.28):

\[A_C^n \rightarrow A_{Y4/C4}^n \rightarrow \text{ Vektor} \perp O_5 \quad C = A_A^n \rightarrow A_{B/A}^n \rightarrow A_{Y4/B4}^n \rightarrow \text{ Vektor} \perp O_5 \]
\[a,b \quad a,b \quad a,b \quad a,b \quad a,b \quad \text{ (6.28)} \]

Sehingga dari persamaan 6.28) didapat harga \(A_{Y4} \). Penyelesaian selanjutnya diserahkan kepada pembaca sebagai latihan.

Contoh soal
1. Pada Gambar berikut terlihat suatu mekanisme. Jika batang hubung 5 bergerak ke arah kanan dengan kecepatan 6 m/s maka tentukanlah :
 b. Kecepatan dan percepatan titik C.
 Skala Gambar 1 : 10
Gambar 6.18 Batang Hubung 5 Bergerak ke Arah Kanan dengan Kecepatan 6 m/s

Solusi:
Dari skala Gambar:
\[\overline{O_{12}C} = 0,13 \, m \quad \overline{O_{14}B} = 0,3 \, m \]
\[\overline{BC} = 0,25 \, m \]

Analisis kecepatan:
\[V_B = V_C + \rightarrow V_{B/C} \]
\[a,b \perp \overline{O_{12}C} \quad \perp \overline{BC} \]

skala 1 cm : m/s

Harga-harga kecepatan:
\[V = 6,9 \, m/s \]
\[V_{c/B} = 5 \, m/s \]
Harga – harga kecepatan sudut:

\[\omega_3 = \frac{V_{C/B}}{BC} = \frac{5}{0,25} = 20 \text{ rad/s} \]

\[\omega_4 = \frac{V_B}{BO_{14}} = \frac{6}{0,3} = 20 \text{ rad/s} \]

Analisis percepatan:

Percepatan normal:

\[A''_B = \frac{V_B^2}{O_{14}B} = \frac{8^2}{0,3} = 213,33 \text{ m/s}^2 \]

\[A''_C = \frac{V_C^2}{O_{12}C} = \frac{6,9^2}{0,13} = 366,23 \text{ m/s}^2 \]

\[A''_{b/c} = \frac{V_{b/c}^2}{BC} = \frac{5^2}{0,25} = 100 \text{ m/s}^2 \]

Dengan demikian, persamaan percepatan dapat dituliskan sebagai berikut

\[A''_B = A_B = A''_C \rightarrow A'_C \rightarrow A''_{b/c} \rightarrow A'_{b/c} \]

\[a, b \quad a, b \quad a, b \parallel O_{12}C \quad a, b \perp BC \]

Dari persamaan tersebut dapat digambarkan polygon percepatan sehingga dihasilkan harga-harga percepatan sebagai berikut:

\[A'_C = 6,4 \times 50 = 320 \text{ m/s}^2 \]

\[A'_{b/c} = 13,5 \times 50 = 675 \text{ m/s}^2 \]
Skala percepatan 1 cm : 50 m/s2

Harga-harga percepatan sudut:

\[\alpha_2 = \frac{A_C'}{O_{12}C} = \frac{320}{0,13} = 2461 \text{ rad/s}^2 \]

\[\alpha_3 = \frac{A_{B/C}'}{BC} = \frac{675}{0,25} = 2700 \text{ rad/s}^2 \]

\[\alpha_4 = 0 \]
DAFTAR PUSTAKA